What are over 50 things to avoid if we are using Spring Data JPA for better performance ?

When working with Spring Data JPA, there are several things you should avoid to ensure efficient and effective usage. Here are 50 things to avoid when using Spring Data JPA:

  • Avoid using inefficient queries without proper indexing.
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.jpa.repository.Query;
import org.springframework.stereotype.Repository;

@Repository
public interface UserRepository extends JpaRepository<User, Long> {

    // Add proper indexing to improve query performance
    @Query("SELECT u FROM User u WHERE u.email = ?1")
    User findByEmail(String email);

    // Add proper indexing to improve query performance
    @Query("SELECT u FROM User u WHERE u.age >= ?1")
    List<User> findUsersByAgeGreaterThanEqual(int age);
}
  • Avoid using wildcard (%) at the start of a LIKE query as it can lead to a full table scan.
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.jpa.repository.Query;
import org.springframework.stereotype.Repository;

@Repository
public interface UserRepository extends JpaRepository<User, Long> {

    // Avoid using wildcard at the start of LIKE query
    @Query("SELECT u FROM User u WHERE u.name LIKE ?1%")
    List<User> findUsersByNameStartingWith(String name);
}
  • Avoid using entity classes with circular dependencies.
import javax.persistence.*;

@Entity
public class User {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;

    private String name;

    // Remove circular dependency
    // @ManyToOne
    // private Department department;

    // Getters and setters
}

@Entity
public class Department {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;

    private String name;

    // Remove circular dependency
    // @OneToMany(mappedBy = "department")
    // private List<User> users;

    // Getters and setters
}
  • Avoid using unnecessary fetch joins that can lead to Cartesian products.
import javax.persistence.*;

@Entity
public class Order {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;

    private String orderNumber;

    // Remove unnecessary fetch join
    // @ManyToOne(fetch = FetchType.EAGER)
    // private Customer customer;

    // Getters and setters
}

@Entity
public class Customer {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;

    private String name;

    // Getters and setters
}
  • Avoid using the fetch = FetchType.EAGER strategy for all associations by default.
  • Avoid using @Transactional at the repository level.
  • Avoid using field-level annotations for relationships (e.g., @ManyToOne on a field).
  • Avoid using optional = false on @OneToOne relationships unless it is truly required.
  • Avoid using large result sets without pagination.
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.stereotype.Repository;

@Repository
public interface UserRepository extends JpaRepository<User, Long> {

    // Use pagination to limit result set size
    Page<User> findAll(Pageable pageable);
}
Pageable pageable = PageRequest.of(1, 10); // Page number starts from 0
Page<User> userPage = userRepository.findAll(pageable);

List<User> users = userPage.getContent();
// Process the list of users
  • Avoid ignoring the effect of transaction isolation levels.
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Transactional;

@Repository
@Transactional
public class UserRepository {

    @PersistenceContext
    private EntityManager entityManager;

    @Transactional(isolation = Isolation.READ_COMMITTED)
    public User getUserById(Long userId) {
        return entityManager.find(User.class, userId);
    }

    // Other methods...
}
  • Avoid using repository methods that return all entities without considering performance implications.
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.jpa.repository.Query;
import org.springframework.stereotype.Repository;

import java.util.List;

@Repository
public interface UserRepository extends JpaRepository<User, Long> {

    // Avoid returning all entities, retrieve specific data
    @Query("SELECT u.id, u.name FROM User u WHERE u.isActive = true")
    List<Object[]> findActiveUsers();

    // Other specific query methods...
}
  • Avoid ignoring the impact of cascading operations on data consistency.
  • Avoid using @Transactional(readOnly = true) without proper justification.
  • Avoid using EntityManager directly within a repository.
  • Avoid using @Query annotations for simple CRUD operations.
  • Avoid ignoring the need for explicit transaction boundaries.
  • Avoid using @EntityGraph annotations without considering their impact on performance.
  • Avoid using optimistic locking without proper handling of concurrent modifications.
import javax.persistence.EntityManager;
import javax.persistence.LockModeType;
import javax.persistence.OptimisticLockException;
import javax.persistence.PersistenceContext;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;

@Repository
@Transactional
public class UserRepository {

    @PersistenceContext
    private EntityManager entityManager;

    public void updateUser(User user) {
        try {
            // Enable optimistic locking with LockModeType.OPTIMISTIC_FORCE_INCREMENT
            User mergedUser = entityManager.merge(user);
            entityManager.lock(mergedUser, LockModeType.OPTIMISTIC_FORCE_INCREMENT);
        } catch (OptimisticLockException ex) {
            // Handle optimistic lock exception
            // Perform appropriate actions like informing the user or retrying the operation
            throw new RuntimeException("Concurrent modification detected. Please try again.");
        }
    }

    // Other methods...
}
  • Avoid ignoring the benefits of second-level caching.
spring.jpa.properties.hibernate.cache.use_second_level_cache=true
spring.jpa.properties.hibernate.cache.region.factory_class=org.hibernate.cache.jcache.JCacheRegionFactory
import javax.persistence.*;
import org.hibernate.annotations.Cache;
import org.hibernate.annotations.CacheConcurrencyStrategy;

@Entity
@Cacheable
@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
public class User {
    // ...
}
  • Avoid using unnecessary projections in queries.
  • Avoid ignoring the performance implications of lazy loading.
  • Avoid using native SQL queries without proper sanitation and validation.
  • Avoid using unnecessary @Transactional(propagation = Propagation.REQUIRES_NEW).
  • Avoid using SELECT * queries without specifying the required fields.
  • Avoid ignoring the importance of proper exception handling and error logging.
  • Avoid ignoring the performance implications of using named queries.
  • Avoid using heavy operations within a transaction boundary.
  • Avoid ignoring the need for database connection pooling.
  • Avoid using non-optimized indexing strategies.
  • Avoid ignoring the importance of auditing and versioning.
  • Avoid using non-unique indexes for fields with high selectivity.
  • Avoid using @Entity listeners for complex business logic.
  • Avoid using inappropriate transaction isolation levels.
  • Avoid using unnecessary cascading on relationships.
  • Avoid using entity inheritance without proper consideration.
  • Avoid ignoring the need for query optimization and tuning.
  • Avoid using queries with excessive or unnecessary joins.
  • Avoid ignoring the benefits of connection and statement pooling.
  • Avoid using unnecessary @Transactional annotations on service methods.
  • Avoid ignoring the impact of database locks on concurrency.
  • Avoid using session-per-request anti-pattern in web applications.
  • Avoid using multiple transactions within a single request.
  • Avoid using unbounded IN clauses in queries.
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.springframework.stereotype.Repository;

@Repository
public class UserRepository {

    @PersistenceContext
    private EntityManager entityManager;

    public List<User> getUsersByIds(List<Long> userIds) {
        String jpql = "SELECT u FROM User u WHERE u.id IN :userIds";
        return entityManager.createQuery(jpql, User.class)
            .setParameter("userIds", userIds)
            .getResultList();
    }

    // Other methods...
}
  • Avoid ignoring the impact of lazy loading on serialization and DTO mapping.
  • Avoid ignoring the need for proper error handling in batch operations.
  • Avoid using entity classes with large numbers of fields.
  • Avoid ignoring the benefits of asynchronous query execution.
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.springframework.stereotype.Repository;

import java.util.List;
import java.util.concurrent.Future;

@Repository
public class UserRepository {

    @PersistenceContext
    private EntityManager entityManager;

    public Future<List<User>> getAllUsersAsync() {
        return entityManager.createQuery("SELECT u FROM User u", User.class)
            .getResultList()
            .completable()
            .thenApplyAsync(users -> {
                // Perform any post-processing or additional logic if needed
                return users;
            });
    }

    // Other methods...
}
  • Avoid using unnecessary pessimistic locking strategies.
  • Avoid using repetitive and redundant queries.
  • Avoid ignoring the impact of JPA cascading on entity lifecycle and performance.
  • Avoid excessive use of @OneToMany and @ManyToMany relationships: Bidirectional One-to-Many and Many-to-Many relationships can introduce complexity and performance issues. Consider using unidirectional relationships or using an intermediary entity to represent complex associations.
  • Avoid ignoring the need for optimistic locking when dealing with concurrent modifications. Use appropriate locking mechanisms, such as @Version or @Lock, to handle concurrent updates.
  • Avoid relying solely on auto-generated primary keys. Consider using alternate strategies like UUIDs or composite keys based on your application’s requirements.
  • Avoid using the flush() method unnecessarily. Let Spring Data JPA manage flushing based on transaction boundaries.

By considering these points and adhering to best practices, you can maximize the benefits of Spring Data JPA and avoid common pitfalls.


Posted

in

by

Comments

One response to “What are over 50 things to avoid if we are using Spring Data JPA for better performance ?”

  1. Hshsh Avatar
    Hshsh

    Explain

Leave a Reply

Your email address will not be published. Required fields are marked *